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Scaling laws for critical manifolds in polycrystalline materials
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We study the surfaces of lowest energy through model polycrystalline materials in two and three dimensions.
When the grain boundaries are sufficiently weak, these critical manifolds~CM’s! lie entirely on grain bound-
aries, while when the grain boundaries are strong, cleavage occurs. A scaling theory for the intergranular to
transgranular transition of CM’s is developed. The key parameters are the average grain sizeg, the ratio of
grain boundary to the grain interior energy,e, and the sample sizeL. The key result is that a critical length scale
exists, Lc(g,e), so that on short length scalesl ,Lc cleavage is observed while at long length scales,l
.Lc , the critical manifold is rough. We develop a scaling theory forLc and find that in two dimensionsLc

'gxy2, while in three dimensionsLc'g exp(bxy3), wherex5e/(12e) andb is a constant. Data from realistic
polycrystalline grain structures are used to test the scaling theory. The exact lowest energy surface through
model grain structures is found using a mapping to the minimum-cut/maximum-flow problem in computer
science. As a function of grain-boundary energy, we observe the crossover from grain-boundary rupture to
mixed mode failure~a mixture of transgramular and intergranular modes! and finally cleavage and that the
two-dimensional data are consistent withy2'3.060.3, while the three-dimensional data are more difficult to
analyze, but are consistent withy3'3.561.0.
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I. INTRODUCTION

Strongly nonlinear processes in disordered materials
quently lead to the emergence of special manifolds on wh
current, voltage, stress, or strain localize. Prominent
amples of these critical manifolds are fracture surfaces
dielectric trees. These examples arise due to irreversible
cesses and the critical manifold corresponds to manifold
damage or rupture. Critical manifolds also emerge in reve
ible nonlinear processes, such as the localization of curre
polycrystalline varistors and the localization of voltage
ceramic superconductors and in Josephson Junction ar
The manifolds which emerge in these processes have
related to the domain walls which occur in random netwo
and random Ising magnets@1#. The objective of this contri-
bution is to describe this type of manifold in polycrystallin
materials. This problem is interesting from a statistical ph
ics viewpoint as polycrystalline materials are topologica
disordered and we would like to know if the scaling law
found for the random bond Ising model extend to this ca
This problem is also interesting from a material scien
viewpoint as a great deal of effort is directed at the engine
ing of grain-boundary morphology to improve the propert
of polycrystalline ceramics and metals@2,3#. To carry out this
grain-boundary engineering~GBE!, it is necessary to have
relation between the properties of individual grain boun
aries along with the cooperative geometry of polycrystall
aggregates and material performance. In many cases, the
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colation of special or random boundaries is used as an i
cator of material performance. However in the highly no
linear processes discussed above, the properties of cri
manifolds~CM’s! as a function of GBE is better indicator o
performance. In this contribution we provide the analytic a
numerical tools upon which CM analysis of GBE materials
based, while the specific applications to GBE materials w
be discussed elsewhere.

The morphology and energy of crystal surfaces have b
analyzed using atomistic methods, as have misoriented in
faces between two single crystals@4,5#. However the analysis
of critical manifolds requires the study of many thousands
grains and is an important example of a multiscale proble
Atomistic simulations may provide the energy and morph
ogy of an individual grain-boundary, however a higher lev
coarse grained, calculation is required to find the energy
separation of a polycrystalline aggregate. In order to ca
out this higher level calculation, we develop a graph rep
sentation of a polycrystalline aggregate. Each bond in
graph is assigned an energy, which depends on whether
in the interior of a grain or on a grain-boundary. The mod
grain structures that we use are generated using the P
model of grain growth@6,7#. These models reproduce th
grain-boundary topology and grain size statistics of me
and ceramics quite accurately.

Finding the lowest energy surface through a graph i
difficult problem, and maps to the problem of finding th
lowest energy domain wall in an Ising magnet@8–10#. It is a
problem that has many metastable states, so that approa
such as simulated annealing or genetic algorithms can
guarantee success. There is, however, an efficient metho
©2003 The American Physical Society07-1
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MEINKE et al. PHYSICAL REVIEW E 68, 066107 ~2003!
find the exact lowest energy surface in a graph. The met
is based on a well-known problem from combinatorial op
mization, the minimum-cut/maximum-flow problem@11#.
The minimal energy surface that we are interested in map
the minimum cut through a capacitated graph, and the en
of the lowest energy interface is equal to the maximum-flo
In two dimensions, the minimum cut corresponds to a pa
which may be found using a different optimization metho
Dijkstra’s method, as recently demonstrated by one of
@12#. Dijkstra’s method is even more efficient than th
maximum-flow method, however it identifies special pa
while the maximum-flow method must be used to find cr
cal surfaces in three dimensions.

The connection between domain walls in Ising magn
and the minimum-cut/maximum-flow problem has led to i
proved precision in the calculation of the energy, ene
fluctuations, and roughness of domain walls in random b
magnets@8,9#. In this paper we extend the scaling theori
developed for domain walls to include the topological dis
der occurring in polycrystalline materials. We show that t
roughening transition of domain walls in Ising magnets c
responds to the transition from cleavage to intergranular f
ure in polycrystalline materials, and we find detailed form
las for the behavior of the crossover length as a function
average grain size and grain-boundary energy. The theor
derive is based on those developed for domain walls in r
dom bond Ising magnets@13,14#, and their extension to de
scribe periodic elastic media@15–17#.

One application of our analysis is to the study of fractu
surfaces@18#. The experimental evidence suggests that fr
ture surfaces have a surface roughnessw, which scales as
w;Lz, whereL is the size of the system and the roughne
exponent is found to be in the range 0.5<z<0.85. It has been
suggested that at short length scales, the ‘‘quasistatic’’ ex
nent should apply@18,19#. We have shown that for mode II
failure ~or scalar quasistatic failure! this exponent is close to
0.41 @19# in three dimensions. Many of the experimen
however, are carried out in polycrystalline materials, so i
important to test the effect of polycrystalline morphology
the quasistatic exponents. For the case of weak grain bo
aries in two-dimensional systems, the intergranular interf
problem was recently simulated@12# and it was found that
the ball and spring model@20,21# produces surfaces tha
have similar properties to the minimum surface energy
second application is to the emergence of voltage manifo
in ceramic superconductors@1,22# and disordered Josephso
junction arrays@23#. In these examples, the onset of a me
surable macroscopic voltage at the critical current is ass
ated with the emergence of a localized manifold acr
which the observed voltage drop occurs@1#.

Although the model we describe here is idealized it
useful to estimate typical values of the parametere to be
expected in applications. In the application to supercond
ors, it is known that the critical current of high angle gra
boundaries is of order 100 times smaller than the criti
current of low angle boundaries. In that case the appropr
ratio is e;1/100 and for isotropic grain structures, the p
mary failure mode is intergranular. In highTc materials
such as BSCCO, this is mitigated by preparing microstr
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tures with highly elongated grains oriented along the dir
tion of current flow. In applications to structural materia
low angle grain boundaries are 5–10 times better th
high angle grain boundaries, so again the failure mode
predominantly intergranular, in the case of uncorrelated r
dom grain boundaries. However in both the supercondu
and structural material applications the microstructure m
be engineered so as to increase the fraction of low an
grain boundaries. When the fraction of low angle boundar
is high enough, the properties of a material can impro
quite dramatically, in a way reminiscent of a percolation p
cess. Generalizations of the theory and models descr
here may be used to model this effect and will be descri
elsewhere.

The paper is arranged as follows. In the following secti
we describe the model that we use. Section III covers
scaling behavior in the limit of weak grain boundaries, wh
Sec. IV describes the theory for the strong grain-bound
or cleavage, limit. Section V considers the transition,
mixed-mode, regime which lies between the weak and str
grain-boundary adhesion limits. As in the random manifo
and periodic elastic media cases, minimum energy surfa
in polycrystalline systems in both two and three dimensio
are always rough in the large lattice limit. Roughening o
curs on length scales larger than a critical lengthLc which is
a function of grain size and grain-boundary energy. Sect
V focuses on the derivation of expressions forLc and nu-
merical results to test the predictions. Section VI contain
summary.

II. THE MODEL AND NUMERICAL METHODS

Examples of minimal energy surfaces in polycrystalli
microstructures in two and three dimensions are presente
Figs. 1 and 2. The grain structures are grown using an a
rithm developed by one of us~E.H.! and described in detai
elsewhere@6,7,24#. In brief, a high temperature configuratio
of a q-state Potts model is quenched to zero temperat
Grains having spin values ranging from 1 toq grow and
anneal. The average grain sizeg increases with time ast1/2 in
both two and three dimensions, and there is a steady s
distribution of grain sizes in the long time limit. The unde
lying lattice used in these simulations is hypercubic. Ea
site has a spin label, and grain-boundaries occur when a
cent spin labels are distinct. Bonds which join such disti
spins are identified as grain-boundary bonds. In our simu
tions we usedq5100 in two dimensions andq5256 in three
dimensions.

To analyze the interplay between grain structure and m
mal energy surface morphology, we assign grain-bound
bonds an energye i and bonds which lie in the interior of th
grains an energyeg . The ratio of these energies is a ke
parameter and we definee5e i /eg . More refined models
would include orientation dependent grain-boundary en
gies and/or a variety of lattice orientations inside the grai
It is important, however, to first understand the minim
model we use here.
7-2
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SCALING LAWS FOR CRITICAL MANIFOLDS IN . . . PHYSICAL REVIEW E68, 066107 ~2003!
FIG. 1. ~Color online! Examples of the lowest
energy manifolds in two-dimensional grain stru
tures as a function of the grain-boundary ener
~Top, e50.6, bottom,e50.9!. The sample size is
10002.
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In order to find the minimal energy surface in our pol
crystalline structures, we use a maximum-flow algorith
which we have written in C11. We use the push-relabe
algorithm of Goldberg and Tarjan@11# which enables us to
find interfaces through 106 site systems in about a minute o
a high end workstation. We have described the details of
method elsewhere@10#.

III. WEAK ADHESION LIMIT e\0

In the limit of weak grain-boundary adhesion~e→0!, the
minimal energy surface through a polycrystalline mate
follows the grain boundaries. The scaling laws for the int
face energy and the interface roughness are found by ext
ing the theory developed for random bond-Ising dom
06610
is

l
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n

walls @13,14#. An example of a random manifold is a min
mal energy domain wall in a hypercubic Ising magnet wh
the exchange constants are all ferromagnetic, but rand
There is a well-developed theory for this problem@13,14#.
The domain wall is assumed to be described by a sin
valued height variableh(r ), and the scaling predictions fo
its properties are as follows. The energy of the lowest ene
domain wall,E, scales asE5a1Ld211a2Lu, whereu is a
universal exponent withu51/3 in two dimensions and
u50.82~2! in three dimensions@8,9#. L is the system size
and a1 and a2 are nonuniversal parameters that are dep
dent on the disorder, but not on the system size. The rou
ness of the lowest energy domain wall is defined to bew
5A^h2&2^h&2. The roughness is found to scale asw
5b1Lz wherez52/3 in two andz50.41~1! in three dimen-
7-3
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FIG. 2. ~Color online! Examples of the lowest
energy manifolds in three-dimensional gra
structures as a function of the grain-boundary e
ergy. The top figure is fore50.1, while the bot-
tom figure is fore50.7. The sample size is 1003.
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sions, andb1 is a nonuniversal parameter. Note thatz andu
are universal exponents which do not depend on the de
of the disorder or the lattice structure, though they do dep
on the spatial dimension. Quantities that are not usu
treated, but that are of interest in applications, are the follo
ing: the number of bonds on the minimal surface,N, which
scales asN5c1Ld211c2Lu; and the fraction of the interfac
that lies on the grain boundaries,f i . Here c1 and c2 are
nonuniversal parameters. Iff i51 the CM is purely inter-
granular while if 0, f i,1, the rupture has a cleavage com
ponent.

We extend the scaling laws for random bond Ising dom
walls to the case of interest here. We find that theaverage
grain size acts like a effective lattice constantso thatL/g
becomes the effective system size. The scaling law for
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energy of a CM is then given by

E5gd21Fa1S L

gD d21

1a2S L

gD uG , ~1!

while the roughness scales as

w5b1gS L

gD z

. ~2!

In Fig. 3, we see that both relations~1! and~2! are in good
agreement with the numerical data. The scaled ene
E/Ld21 is independent of grain size in both two and thr
dimensions, indicating that the correction to scaling term
volving the Lu term is small compared to the leading term
7-4
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SCALING LAWS FOR CRITICAL MANIFOLDS IN . . . PHYSICAL REVIEW E68, 066107 ~2003!
The scaled widthw/Lz is found, approximately, to scale a
g12z with z52/3 in two dimensions andz50.41~1! in three
dimensions, in nice agreement with the scaling predictio

In the weak grain-boundary limit, the manifold energy
proportional to the number of bondsN in the interface,

E5egeN ~3!

FIG. 3. Tests of the hypothesis thatL/g is the effective lattice
size. The top figure is for square lattices, while the lower figure
for cubic lattices. If the scaling hypothesis is correct, thenE
;Ld21, asymptotically independent of g, while w;Lzg12z. The
scaled manifold energy (E/Ld21) as a function of grain size is
given by the open circles, while the solid scattered dots give
data for the scaled roughness (w/Lz;g12z) as a function of grain
size. The raw data are plotted for a range of sample sizes var
from L5500 to 2000 in two dimensions andL550 to 125 in three
dimensions. The fit slopes found, i.e., for the square lattice c
~dotted line in the top figure! 20.3760.05 and for the cubic lattice
case~dotted line in the bottom figure! 20.6460.10, are in good
agreement with the scaling prediction 12z, which predicts 1/3 in
two dimensions and 0.5960.01 in three dimensions.
06610
.

andN must therefore scale like the energy,

N5gd21Fc1S L

gD d21

1c2S L

gD uG .
As we shall see in Sec. IV, the weak adhesion limit appl
over quite a broad range of grain-boundary energies, wit
mixed transgranular and intergranular failure regime sett
in at ec'1/2 in two dimensions andec'1/3 in three dimen-
sions. However, these thresholds are nonuniversal and sh
be expected to depend on the details of the grain struc
and lattice geometry.

In the simulations described here there is an underly
square or cubic lattice. The critical value ofe can be esti-
mated by considering the conditions under which the int
face prefers to cleave a section of the grain containing
atoms~square lattice! or a two-atom square~cubic lattice!.
We choose these configurations as a study of the grain s
tures indicates that they are the smallest facets which ap
frequently in the polycrystalline microstructure. The ener
to cleave two atoms on a square lattice is 2eg , and that
required to cleave a two-atom square on a cubic lattice
4eg . The energy to follow the grain-boundary is 4e i ~square
lattice! and 12e i ~cubic lattice!. Balancing these two energie
leads to the critical valuesec51/2 ~square! andec51/3 ~cu-
bic!. These values are quite close to the thresholds see
the simulations~see Figs. 4–7!, though in simulations the
threshold is not sharp, as other local configurations pla
role in determining the threshold.

IV. STRONG ADHESION LIMIT

The strong adhesion limit applies only in the limite→1.
Nevertheless it is useful to understand this limit to set
stage for the mixed regimeec<e,1. When cleavage occurs
i.e., the interface is flat. The roughness and number of bo
arew50 andN5Ld21, respectively. The energy can be e
pressed asE5eg( f g1e f i), where f g is the fraction of the
interface within the grain,f i is the fraction of the interface
along grain boundaries, andf g1 f i51. We can rewrite the
energy in terms off i :

E5eg~12 f i1e f i !. ~4!

Note thatf i is not zero even in the cleavage limit, as eve
a flat surface must cross some grain boundaries. As ca
seen from Eq.~4! the energy is proportional toe as long asf i
is a constant, which is true provided the interface does
begin to roughen.

In the limit of a cleavage surface a simple argument forf i
can be made, which turns out to be wrong for our gra
structures but which is useful nevertheless. The interface
to cross on averageLd21/gd21 grains. The area of the grain
boundary of each crossing is proportional togd22 and the
total area of the interface isLd21. The fraction of the inter-
face along grain boundaries is then

f i5d1

gd22Ld21

Ld21gd21
5d1

1

g
, ~5!
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MEINKE et al. PHYSICAL REVIEW E 68, 066107 ~2003!
where d1 is a constant that depends on the details of
grain-boundary structure, but is independent of the aver
grain sizeg. However Eq.~5! does not describe the data we
Instead,f i seems to be quite insensitive to variations in gr
size. This may be understood as being due to facets. For
e,1, it is energetically favorable to maximize the number
grain-boundary bonds on the CM, and in a faceted mic
structure, this is achieved by placing the cleavage surf
on the plane with the maximum number of facets. This eff
is not taken into account in the estimate, Eq.~5!. In a system

FIG. 4. The total number of bonds which cross the critical ma
fold. The top figure is for two dimensional grain structures, wh
the bottom figure is for three-dimensional grain structures. T
solid line is the average, while the dashed lines indicate one s
dard deviation in the data. The calculations are for the follow
values of sample sizeL ~and number of configurationsN). For
square lattices 500~51!, 1000~54!, 1200~20!, 2000~2!, with the av-
erage grain sizeg varying from 6 to 100; for cubic lattices we use
L(N)550(10), 75~10!, 100~10!, 125~10!, with the grain size in the
interval, 3<g<12.
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with near spherical grains, however, we would expect Eq.~5!
to hold.

V. INTERMEDIATE REGIME

Results found from analysis of interfaces in polycryst
line materials as a function of the grain-boundary bo
strengthe are presented in Figs. 4–7. It is seen from this d
that the weak adhesion behavior persists up to energy ra
ec;1/2 in two dimensions andec;1/3 in three dimensions
At higher grain-boundary adhesion, we enter the mixed
gime, where the fraction of the interface which is intragran
lar is a sensitive function of the adhesion energye. In two
dimensions, the mixed phase persists up toe;0.92; however,

-

e
n-

FIG. 5. The fraction of the CM,f i , which is composed of grain-
boundary bonds. The top figure is for two-dimensional syste
while the bottom figure is for three-dimensional systems. The s
line is the average, while the dashed lines indicate one stan
deviation in the data. The sample size, number of configuratio
and grain sizes used are the same as those given in the capti
Fig. 4.
7-6
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SCALING LAWS FOR CRITICAL MANIFOLDS IN . . . PHYSICAL REVIEW E68, 066107 ~2003!
in three dimensions cleavage sets in ate;0.70. However, we
argue, based on an understanding of similar issues in mo
of periodic elastic media, that in reality CM’s are rough f
e.0.7, provided the sample sizeL.Lc , whereLc is a criti-
cal length which diverges exponentially with the ener
12e. This means that cleavage occurs on short length sc
but that on long enough length scales CM’s in three dim
sions are rough. We now present an analytic argumen
describe the way in which the crossover from cleavage
intergranular failure occurs in the mixed phase.

Our theory for the onset of the mixed rupture regime
based on theories for the roughening of manifolds in perio
elastic media@15–17#. The key idea originated with Imry
and Ma@25# who constructed a theory for the instability o
the ferromagnetic phase in the random-field Ising model

FIG. 6. Average interface energy~solid line! per unit area and its
standard deviation~up and down triangles! vs e. The top figure is
for two-dimensional grain structures, while the bottom figure is
three-dimensional grain structures. The sample size, number of
figurations and grain sizes used are the same as those given
caption to Fig. 4.
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the case of critical manifolds in polycrystalline materials, f
any e,1 there is a competition between the reduction
energy produced when the interface incorporates bound
bonds and the extra bonds which are caused by any devia
from cleavage. The scaling theory is a consequence of fi
ing the manifold which minimizes the sum of these comp
ing energies.

For ease of discussion we first consider faceted grain
two dimensions, as indicated in Fig. 8. In this case, whene
the fracture interface encounters a grain boundary it has
choices. It can either go straight through the grain and cle
it or follow one of the available grain-boundary paths. W
assume that a grain boundary makes an angleu with the

r
n-
the

FIG. 7. The scaled interface widthw/(Lzg12z) vs e. The top
figure is for two-dimensional grains structures, while the botto
figure is for three-dimensional grain structures. The solid line wh
joins the square symbols is a fit to Eq.~19! ~top figure! and Eq.
~20!, with y354 ~bottom figure!. The solid line which extends ove
the entiree range is the average of the data, while the dashed li
indicate one standard deviation. The sample size, number of
figurations, and grain sizes used are the same as those given i
caption to Fig. 4.
7-7
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MEINKE et al. PHYSICAL REVIEW E 68, 066107 ~2003!
cleavage interface. The grain-boundary path is longer t
the cleavage path, which has a lengthl. The length of the
grain-boundary facet is thenl 1h, due to the underlying
square lattice. The grain-boundary angle is related toh and l
by, u5arctan(h/l). For a given value of grain-boundary en
ergy e, there is a critical grain-boundary angle above wh
cleavage occurs. The condition for this critical angle is

e~ l 1h!

l
>1,

h

l
>

1

e
21,

which gives the critical angle for a givene

uc5arctanS 1

e
21D . ~6!

It is locally favorable for the critical manifold to follow al
grain-boundary facets with anglesu smaller thanuc .

The argument above gives thelocal picture of how the
interface roughens. According to this local picture, the lo
fraction f L of grain boundaries which lie on a minimal en
ergy surface is given by

f L5E
2uc

uc
P~u!du, ~7!

where P(u) is the probability that a grain-boundary is
angleu to the cleavage direction. In the case of random
oriented grains,P(u) is a constant, so we have

f L'Auc'
12e

e
, ~8!

whereA is a normalization constant. In the last express
on the right-hand side of Eq.~8!, we have used a linea
expansion of the arctan function. In three dimensions
arguments are more complex; however, for the argume
below, we only need to define a local fractionf L . A refine-
ment which may be important in some cases is to inclu
the curvature of the grain boundaries. If curvature is
cluded, the grain boundaries may partially fail. In the thre

FIG. 8. A manifold through a faceted grain structure.
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dimensional case partial failure is also more likely. Howev
this does not qualitatively change the analysis, so for eas
discussion we derive the basic results assuming only c
plete rupture of facets.

The argument above describes the local variations in
CM morphology. However, we seek theglobal minimumen-
ergy surface. To find the global minimum we need to co
sider the energy fluctuations on large length scales. On la
length scales, there exist statistically favorable regions wh
a number of small angle facets are close to each other.
energetically favorable to include these regions in the m
mum energy interface. To include these favorable region
is necessary for the interface to roughen. The interplay
tween the desire of the interface to accommodate favora
regions with many low angle facets and the energy cos
manifold wandering determines the interface roughness.
now make this energy balance quantitative.

According to the local argument, culminating in Eq.~8!,
the typical number of facets which occur due to local dev
tions from a cleavage surface is given by

Nf5 f L~L/g!d21. ~9!

The central limit theorem states that the typical variation
this quantity isdNf5Nf

1/2. Such variations can be eithe
positive ~unfavorable fluctuations! or negative ~favorable
fluctuations!. In our case, the favorable case corresponds
clustering of grain boundaries which have low angles to
cleavage direction. There is another factor which must
considered, and that is the fact that there are many way
which a favorable fluctuation on an interface may be
lected, that is, the minimal energy fluctuations may occur
many different places in the material. This is an entropyl
factor. The typical number of ways that the setNf of facets
may be selected on a cleavage plane is of order (L/g). To
include this factor in estimating the typical largest ener
gain, we set

L

g
e2dNf

2/Nf'1. ~10!

This sort of argument has been used in other rare fluctua
problems, for example, in estimating the fracture strength
random networks@26#. The typical size of the most favorabl
fluctuation in the number of low angle facets in a minim
energy surface is then

dNf ,max' f L
1/2S L

gD (d21)/2F lnS L

gD G1/2

. ~11!

The typical energy gain for each favorable facet iseg(1
2e)gd21/2. Multiplying this by the typical largest favorabl
fluctuation in the number of facets@Eq. ~11!# gives

Ugain'2eg~12e!gd21f L
1/2S L

gD (d21)/2F lnS L

gD G1/2

, ~12!

where we have dropped constant factors. To take advan
of this energy gain, the interface must make excursions fr
7-8
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the cleavage plane which are of the order of the grain s
This leads to an energy cost of order

Ucost'ege gLd22.

SettingUgain1Ucost50 we find a relation between the crit
cal lengthLc , the grain size, and the grain-boundary adh
sion,

12e

e
5

BS Lc

g D (d23)/2

f L
1/2F lnS Lc

g D G1/2. ~13!

Here B is an undetermined constant, which depends on
details of the grain structure, lattice structure, etc. In t
dimensions Eq.~13! becomes

12e

e
5

B

f L
1/2S Lc

g D 1/2F lnS Lc

g D G1/2 ~14!

while in three dimensions we find

12e

e
5

B

f L
1/2F lnS Lc

g D G1/2. ~15!

From Eqs.~14! and ~15! we can conclude that for larg
enough systems the cleavage state is unstable to fluctua
for any e,1 in both two and three dimensions. This is mo
easily understood by isolating the critical length. In two d
mensions, the logarithmic term in Eq.~14! is usually negli-
gible, in which case we find that the critical length is giv
by, after dropping constant terms,

Lc5
g

f L

e2

~12e!2
'gS e

12e D y2

, ~16!

where the last expression on the right-hand side of this eq
tion is found by using Eq.~8!, which also implies thaty2
53.0. In three dimensions, the logarithm is important an
leads to a critical length which is an exponential function
the grain-boundary adhesion. From Eq.~15! we have

Lc5gexpS 1

f L

~Be!2

~12e!2D 'g expFbS e

12e D y3G , ~17!

whereb is an unknown constant. In writing the last expre
sion in the right-hand side of Eq.~17!, we have assumed tha
f L'@(12e)/e#y322 as is implied by Eq.~8!, with y353.
However Eq.~8! may not apply to three-dimensional gra
structures, where partial failure of facets is likely, so in an
lyzing the data, we allowy3 to be a free parameter.

For sample sizesL,Lc the CM’s have constant rough
ness, while for sample sizesL.Lc the interface roughnes
grows as (L/Lc)

z with increasing length scale.Lc is also the
linear size of the cleavage regions on the interface. Th
06610
e.

-

e
o

ns
t

a-

it
f

-

-

se

cleavage regions are terminated by steps which are of
order of grain size. Critical manifolds are thus flat on leng
scales less thanLc and algebraically rough on larger leng
scales. The critical length diverges ase→1 and decrease
continuously with decreasinge,1. At the transition point to
the weak adhesion limit~which occurs atec;1/d), whered
is dimension, it becomes a constant andLc5g. Formulas
~16! and ~17! are valid up to the transition to the weak a
hesion limit.

Lc is exponentially dependent one/~12e! in three dimen-
sions and only algebraically dependent on this quantity
two dimensions. This means thatLc diverges very rapidly as
e→1 in three dimensions so that cleavage is typical foe
near one, even in large samples. This is illustrated in Fig

FIG. 9. The probability that a critical manifold has zero roug
ness as a function ofe. The upper figure is for square lattices, whi
the lower figure is for cubic lattices. The sample size is given in
legend to each figure. The grain sizes used for the square la
case are restricted tog'9.5, while in the three-dimensional cas
g'6.5.
7-9



nc
e
o

d
nc

fo
,

st
th
h
T
th

on
e-
e

IV
tie

en

ng

ee

e
a
ve
h

l
ll

tial

ry

ra-
Fig.
e

e

s
n

MEINKE et al. PHYSICAL REVIEW E 68, 066107 ~2003!
which gives the probability that cleavage occurs as a fu
tion of e. For the sample sizes available to us, cleavag
almost certain fore.0.7 in three dimensions, while in tw
dimensions mixed mode failure persists fore,0.93. This is
partially due to the larger sample sizes available in two
mensions, but it is mostly due to the exponential diverge
in Lc in three dimensions.

In order to test the scaling predictions forLc , we rewrite
the scaling behavior of the roughness in terms ofLc ,

w

g
'S L

Lc
D z

. ~18!

Using this formula, we should be able to collapse data
different values ofg and e onto one scaling plot. However
this data collapse can only be expected in a range ofe.ec
and up to the value ofe at which cleavage becomes mo
likely. For the sample sizes available to us, this restricts
value of e that we can use to quite a narrow range. T
results are nevertheless quite good, as seen in Fig. 10.
scatter in the data is real, there are strong variations in
roughness even in the case of intergranular rupture~see Fig.
3!. From this analysis we find that the theoretical predicti
Eq. ~16!, with y253 is well supported by the data. The thre
dimensional data are less restrictive and we are only abl
state that the data are consistent with Eq.~17!, with y3
'3.561.0.

From the theory developed above and in Secs. III and
it is possible to understand the behavior of the quanti
plotted in Figs. 4–7 as a function of the energy ratioe. First
consider the width data presented in Fig. 7. In two dim
sions, using Eqs.~16! and ~18! the theory predicts that

w

g1/3L2/3
'S 12e

e D 2

~19!

while in three dimensions Eqs.~17! and ~18! imply that

w

g12zLz
'expF2bS e

12e D y3G , ~20!

whereb is a constant which is not specified by the scali
theory andy3'3.561.0. The fact thatw'0 for e.0.7 is
due to the fact that the critical length is very large in thr
dimensions. Nevertheless, we expect finite roughness
macroscopic samples for alle.ec'1/d. The solid lines con-
necting the boxes in Fig. 7 give fits to Eqs.~19! ~top figure in
Fig. 7! and ~20! ~bottom figure in Fig. 7!. The fits are very
good neare51, even in the regime in which the finit
samples which we are considering frequently undergo cle
age. The fact that the three-dimensional case fits well e
close to the intergranular regime is probably fortuitous. T
theory is not strictly valid in that regime.

The energy~see Fig. 6! is a linear function ofe for e
,ec @see Eq.~3!#. The energy is also a linear function ofe
when cleavage occurs@see Eq.~4!#. In our three-dimensiona
samples this occurs fore.0.7. There is then only a sma
region ~see Fig. 6, bottom figure! in which the energy is a
nonlinear function ofe. Again in the limit of macroscopic
06610
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e
samples the nonlinear regime extends all the way toe51,
though it should look almost linear due to the exponen
behavior ofLc .

The fraction of CM bonds which are grain-bounda
bonds,f i ~see Fig. 5! is approximated by~in two dimensions!

f i5 f L1
g

g1Lc
, ~21!

FIG. 10. Scaling of roughness. The roughnessw/g is plotted vs
L/Lc on a log-log scale. We used the same number of configu
tions, grain sizes, and configurations as quoted in the caption to
4. The top figure is for square lattices in the mixed regim
0.6<e<0.9 and we used Eq.~16! for Lc , with y253. The solid line
is a best fit line and has slope 0.6460.10, which is consistent with
the scaling predictionz52/3 in two dimensions. The bottom figur
is for cubic lattices in the mixed regime 0.4<e<0.6 and we used
Eq. ~17! for Lc , with y354. The solid line is a best fit line and ha
slope 0.4760.10, which is consistent with the scaling predictio
z50.4160.01 in three dimensions.
7-10
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where f L is the fraction of facets which are energetica
favorable, based on a local condition, and the ratiog/(g
1Lc) gives the additional interface bonds which occur d
to the contribution from nonlocal wandering. In three dime
sions the analogous expression is

f i5 f L1
2pgLc

2pgLc1pLc
2 . ~22!

Similar expressions can be found for the number of bonds
the interface~Fig. 4!. Using Eqs.~19! and~20!, these expres-
sions lead to rather complex functions ofe; however, the
main point to be taken away from the analysis is that
critical lengthLc sets the scale for the crossover from inte
granular to mixed mode to cleavage in all of the observab
that we have studied.

From the analysis above it is clear that once we findLc as
a function of material parameters, it is possible to develo
detailed theory for the behavior of many of the properties
interest as a function of material parameters. In our curr
work we are developing formulas forLc in more realistic
cases such as GBE materials and in fiber and platelet r
forced materials.

VI. SUMMARY

The energy and morphology of the minimum energy s
faces in polycrystalline materials have been analyzed. Th
minimum energy surfaces are~CM’s! in the sense that the
are the surfaces on which voltage localizes in certain non
ear electrical processes@1#, and they provide an approxima
tion to quasistatic fracture surfaces at short distances@18#.

We have developed a scaling theory to describe the
havior of the CM energy and interface morphology as a fu
tion of the ratio of the grain-boundary energy to the int
grain energy,e. Intergranular processes dominate up to
critical thresholdec'1/d, for d-dimensional hypercubic lat
tices. In the mixed mode phase,e.ec , the critical manifold
,

c

ct
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is accommodated partially by grain-boundary rupture a
partially through cleavage of the grains. We found that
short length scalesl ,Lc cleavage occurs, but that on lon
length scalesl @Lc CM’s are always rough in both two an
three dimensions. The critical lengthLc is simply propor-
tional to the average grain size, but is a more nontrivial fu
tion of the energy ratioe. Explicit expressions forLc are
given in Eqs.~16! and ~17! for two and three dimensions
respectively. These expressions are confirmed by nume
simulations using the maximum-flow algorithm@see Figs.
4–10!. We showed that it is possible to relate the behavior
properties of interest, such as the intergranular fractionf i and
the CM roughnessw, to Lc so thatLc is the central quantity
of the theory.

We are currently using this approach to study gra
boundary engineered materials where the objective is to
crease the number of low angle grain boundaries in orde
improve the material performance. In a more general cont
it has been realized for some time that it is necessary
develop theories for the performance of complex mater
that go beyond the unit cell model@27,28#. In the case of
polycrystalline materials, the unit cell model uses the av
age grain size as the typical length scale. The crosso
length Lc introduced here is due to a cooperative effect
many grain boundaries. It provides an interesting new al
native length scale which is important in a broad range
nonlinear effects in polycrystalline materials.
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