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Scaling laws for critical manifolds in polycrystalline materials
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We study the surfaces of lowest energy through model polycrystalline materials in two and three dimensions.
When the grain boundaries are sufficiently weak, these critical manif@s) lie entirely on grain bound-
aries, while when the grain boundaries are strong, cleavage occurs. A scaling theory for the intergranular to
transgranular transition of CM’s is developed. The key parameters are the average graintlsezeatio of
grain boundary to the grain interior energyand the sample side The key result is that a critical length scale
exists, L.(g,€), so that on short length scaléscL. cleavage is observed while at long length scales,
>L., the critical manifold is rough. We develop a scaling theorylfgrand find that in two dimensions,
~gx¥2, while in three dimensionk .~ g exp(©x’3), wherex=€/(1— €) andb is a constant. Data from realistic
polycrystalline grain structures are used to test the scaling theory. The exact lowest energy surface through
model grain structures is found using a mapping to the minimum-cut/maximum-flow problem in computer
science. As a function of grain-boundary energy, we observe the crossover from grain-boundary rupture to
mixed mode failurela mixture of transgramular and intergranular mgdasd finally cleavage and that the
two-dimensional data are consistent wytyr= 3.0+ 0.3, while the three-dimensional data are more difficult to
analyze, but are consistent wigh~ 3.5+ 1.0.
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[. INTRODUCTION colation of special or random boundaries is used as an indi-
cator of material performance. However in the highly non-
Strongly nonlinear processes in disordered materials frelinear processes discussed above, the properties of critical
guently lead to the emergence of special manifolds on whiclmanifolds(CM’s) as a function of GBE is better indicator of
current, voltage, stress, or strain localize. Prominent experformance. In this contribution we provide the analytic and
amples of these critical manifolds are fracture surfaces andumerical tools upon which CM analysis of GBE materials is
dielectric trees. These examples arise due to irreversible pripased, while the specific applications to GBE materials will
cesses and the critical manifold corresponds to manifolds dbe discussed elsewhere.
damage or rupture. Critical manifolds also emerge in revers- The morphology and energy of crystal surfaces have been
ible nonlinear processes, such as the localization of current ianalyzed using atomistic methods, as have misoriented inter-
polycrystalline varistors and the localization of voltage infaces between two single crystdds5]. However the analysis
ceramic superconductors and in Josephson Junction arraysf. critical manifolds requires the study of many thousands of
The manifolds which emerge in these processes have begmains and is an important example of a multiscale problem.
related to the domain walls which occur in random networksAtomistic simulations may provide the energy and morphol-
and random Ising magnef&]. The objective of this contri- ogy of an individual grain-boundary, however a higher level,
bution is to describe this type of manifold in polycrystalline coarse grained, calculation is required to find the energy of
materials. This problem is interesting from a statistical physseparation of a polycrystalline aggregate. In order to carry
ics viewpoint as polycrystalline materials are topologically out this higher level calculation, we develop a graph repre-
disordered and we would like to know if the scaling laws sentation of a polycrystalline aggregate. Each bond in the
found for the random bond Ising model extend to this casegraph is assigned an energy, which depends on whether it is
This problem is also interesting from a material sciencein the interior of a grain or on a grain-boundary. The model
viewpoint as a great deal of effort is directed at the engineergrain structures that we use are generated using the Potts
ing of grain-boundary morphology to improve the propertiesmodel of grain growth[6,7]. These models reproduce the
of polycrystalline ceramics and met§is3]. To carry out this  grain-boundary topology and grain size statistics of metals
grain-boundary engineerin@BE), it is necessary to have a and ceramics quite accurately.
relation between the properties of individual grain bound- Finding the lowest energy surface through a graph is a
aries along with the cooperative geometry of polycrystallinedifficult problem, and maps to the problem of finding the
aggregates and material performance. In many cases, the p&west energy domain wall in an Ising magp@t10]. It is a
problem that has many metastable states, so that approaches
such as simulated annealing or genetic algorithms cannot
*Electronic address: duxbury@pa.msu.edu guarantee success. There is, however, an efficient method to
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find the exact lowest energy surface in a graph. The methotlires with highly elongated grains oriented along the direc-
is based on a well-known problem from combinatorial opti-tion of current flow. In applications to structural materials,
mization, the minimum-cut/maximum-flow problefi1]. low angle grain boundaries are 5-10 times better than
The minimal energy surface that we are interested in maps thigh angle grain boundaries, so again the failure mode is
the minimum cut through a capacitated graph, and the energyredominantly intergranular, in the case of uncorrelated ran-
of the lowest energy interface is equal to the maximum-flowdom grain boundaries. However in both the superconductor
In two dimensions, the minimum cut corresponds to a pathand structural material applications the microstructure may
which may be found using a different optimization method,be engineered so as to increase the fraction of low angle
Dijkstra’s method, as recently demonstrated by one of ugrain boundaries. When the fraction of low angle boundaries
[12]. Dijkstra’s method is even more efficient than theis high enough, the properties of a material can improve
maximum-flow method, however it identifies special pathsquite dramatically, in a way reminiscent of a percolation pro-
while the maximum-flow method must be used to find criti- cess. Generalizations of the theory and models described
cal surfaces in three dimensions. here may be used to model this effect and will be described
The connection between domain walls in Ising magnetsgisewhere.
and the minimum-cut/maximum-flow problem has led to im-  the paper is arranged as follows. In the following section
proved precision in the calculation of the energy, energy e gescribe the model that we use. Section Il covers the
fluctuations, and ro'ughness of domain walls in r'andom bpn caling behavior in the limit of weak grain boundaries, while
:jnea:/%rllgtse[g'%r I(;]om:;np\i‘/gﬁ; \t'geiféhecjnedt;getscgllgngcg}edc:gsrs_Sec. IV describes the theory for the strong grain-boundary,
P poiog or cleavage, limit. Section V considers the transition, or

der occurring in polycrystalline materials. We show that themixed-mode reqime which lies between the weak and stron
roughening transition of domain walls in Ising magnets cor- ey 9

responds to the transition from cleavage to intergranular failgr?;n-bqugt_jar); adhesmg_ limits. As n Fhe random mam]l‘old
ure in polycrystalline materials, and we find detailed formu-2nd Periodic elastic media cases, minimum energy surfaces

las for the behavior of the crossover length as a function of? Polycrystalline systems in both two and three dimensions

average grain size and grain-boundary energy. The theory w@€ always rough in the large lattice limit. Roughening oc-

derive is based on those developed for domain walls in ran€urs on length scales larger than a critical lerigttwhich is

dom bond Ising magnefd3,14], and their extension to de- @ function of grain size and grain-boundary energy. Section

scribe periodic elastic med{d5-17. V focuses on the derivation of expressions fqr and nu-
One application of our analysis is to the study of fracturemerical results to test the predictions. Section VI contains a

surfaceqd 18]. The experimental evidence suggests that fracsummary.

ture surfaces have a surface roughnessvhich scales as

w~L¢, whereL is the size of the system and the roughness

exponent is found to be in the range €5<0.85. It has been Il. THE MODEL AND NUMERICAL METHODS
suggested that at short length scales, the “quasistatic” expo- o _ _
nent should apply18,19. We have shown that for mode 1l Examples of minimal energy surfaces in polycrystalline

failure (or scalar quasistatic failuyehis exponent is close to Microstructures in two and three dimensions are presented in
0.41[19] in three dimensions. Many of the experiments, Figs. 1 and 2. The grain structures are grown using an algo-
however, are carried out in polycrystalline materials, so it isfithm developed by one of u€.H.) and described in detail
important to test the effect of polycrystalline morphology onelsewherg6,7,24. In brief, a high temperature configuration
the quasistatic exponents. For the case of weak grain boun@f a g-state Potts model is quenched to zero temperature.
aries in two-dimensional systems, the intergranular interfacérains having spin values ranging from 1 ¢ogrow and
problem was recently simulatdd2] and it was found that anneal. The average grain sgécreases with time as’?in

the ball and spring modd]20,21] produces surfaces that both two and three dimensions, and there is a steady state
have similar properties to the minimum surface energy. Adistribution of grain sizes in the long time limit. The under-
second application is to the emergence of voltage manifoldlying lattice used in these simulations is hypercubic. Each
in ceramic superconductof$,22] and disordered Josephson site has a spin label, and grain-boundaries occur when adja-
junction arrayq23]. In these examples, the onset of a mea-cent spin labels are distinct. Bonds which join such distinct
surable macroscopic voltage at the critical current is assocspins are identified as grain-boundary bonds. In our simula-
ated with the emergence of a localized manifold acrosgions we used)=100 in two dimensions angl= 256 in three
which the observed voltage drop occlitg. dimensions.

Although the model we describe here is idealized it is To analyze the interplay between grain structure and mini-
useful to estimate typical values of the parametdo be mal energy surface morphology, we assign grain-boundary
expected in applications. In the application to superconductbonds an energy; and bonds which lie in the interior of the
ors, it is known that the critical current of high angle graingrains an energy,. The ratio of these energies is a key
boundaries is of order 100 times smaller than the criticaparameter and we define=e¢;/e,. More refined models
current of low angle boundaries. In that case the appropriateould include orientation dependent grain-boundary ener-
ratio is e~1/100 and for isotropic grain structures, the pri- gies and/or a variety of lattice orientations inside the grains.
mary failure mode is intergranular. In high, materials It is important, however, to first understand the minimal
such as BSCCO, this is mitigated by preparing microstrucimodel we use here.
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100 200 300 400 500 600 700 800 900 1000 FIG. 1. (Color onling Examples of the lowest

(a) energy manifolds in two-dimensional grain struc-
tures as a function of the grain-boundary energy
(Top, €=0.6, bottom,e=0.9). The sample size is
100C.

(b)

In order to find the minimal energy surface in our poly- walls [13,14]. An example of a random manifold is a mini-
crystalline structures, we use a maximum-flow algorithmmal energy domain wall in a hypercubic Ising magnet where
which we have written in @ +. We use the push-relabel the exchange constants are all ferromagnetic, but random.
algorithm of Goldberg and Tarjafi1] which enables us to There is a well-developed theory for this probléd8,14.
find interfaces through £Gsite systems in about a minute on The domain wall is assumed to be described by a single

a high end workstation. We have described the details of thi¥alued height variablé(r), and the scaling predictions for
method elsewhergL0]. its properties are as follows. The energy of the lowest energy

domain wall,E, scales a£=a;L% *+a,L? wheredis a
universal exponent withf=1/3 in two dimensions and
#=0.822) in three dimension$8,9]. L is the system size

In the limit of weak grain-boundary adhesi¢a—0), the  anda; anda, are nonuniversal parameters that are depen-
minimal energy surface through a polycrystalline materialdent on the disorder, but not on the system size. The rough-
follows the grain boundaries. The scaling laws for the inter-ness of the lowest energy domain wall is defined towbe
face energy and the interface roughness are found by extene-+/(h?)—(h)2. The roughness is found to scale as
ing the theory developed for random bond-Ising domain=b,L¢ where¢=2/3 in two and{=0.41(1) in three dimen-

IIl. WEAK ADHESION LIMIT  e—0
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Y X FIG. 2. (Color onling Examples of the lowest
(a) energy manifolds in three-dimensional grain
structures as a function of the grain-boundary en-
ergy. The top figure is foe=0.1, while the bot-
tom figure is fore=0.7. The sample size is 180

sions, andb, is a nonuniversal parameter. Note tlifadnd 6  energy of a CM is then given by
are universal exponents which do not depend on the details
of the disorder or the lattice structure, though they do depend
on the spatial dimension. Quantities that are not usually
treated, but that are of interest in applications, are the follow-
ing: the number of bonds on the minimal surfabkg,which  while the roughness scales as
scales adl=c;L9 1+c,L% and the fraction of the interface
that lies on the grain boundarie§,. Herec,; andc, are
nonuniversal parameters. ff=1 the CM is purely inter-
granular while if 0<f;<1, the rupture has a cleavage com-
ponent. In Fig. 3, we see that both relatiofly and(2) are in good

We extend the scaling laws for random bond Ising domairagreement with the numerical data. The scaled energy
walls to the case of interest here. We find that #verage E/LY"! is independent of grain size in both two and three
grain size acts like a effective lattice constaut thatL/g dimensions, indicating that the correction to scaling term in-
becomes the effective system size. The scaling law for theolving theL? term is small compared to the leading term.

0
}, (1)

¢
: 2

L

w=b,g
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and N must therefore scale like the energy,

0}
As we shall see in Sec. IV, the weak adhesion limit applies
over quite a broad range of grain-boundary energies, with a
T TR mixed transgranular and intergranular failure regime setting
o G | inate,~1/2 in two dimensions ane.~1/3 in three dimen-
sions. However, these thresholds are nonuniversal and should
be expected to depend on the details of the grain structure
and lattice geometry.

In the simulations described here there is an underlying
square or cubic lattice. The critical value efcan be esti-
5 , ‘ mated by considering the conditions under which the inter-

10' 10° face prefers to cleave a section of the grain containing two
g atoms(square latticeor a two-atom squarécubic lattice.

(a) We choose these configurations as a study of the grain struc-
tures indicates that they are the smallest facets which appear
frequently in the polycrystalline microstructure. The energy
to cleave two atoms on a square lattice igg2 and that
required to cleave a two-atom square on a cubic lattice is
4€4. The energy to follow the grain-boundary ig;4square
lattice) and 1%; (cubic latticg. Balancing these two energies
leads to the critical values,= 1/2 (square and e.= 1/3 (cu-
bic). These values are quite close to the thresholds seen in
the simulations(see Figs. 4-){ though in simulations the
10k i threshold is not sharp, as other local configurations play a
role in determining the threshold.

d-1
+C,

L

L

g
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\
\
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IV. STRONG ADHESION LIMIT

The strong adhesion limit applies only in the lingt1.

> ‘ , Nevertheless it is useful to understand this limit to set the
3 10 stage for the mixed regime, < e<1. When cleavage occurs,

i.e., the interface is flat. The roughness and number of bonds

(b) arew=0 andN=L%"1, respectively. The energy can be ex-

FIG. 3. Tests of the hypothesis thatg is the effective lattice pressed aE_:_EQ(ngr Ef!)’ vyherefg IS _the frac“of‘ of the
size. The top figure is for square lattices, while the lower figure ismterface within the grainf; is the fraction of the interface

for cubic lattices. If the scaling hypothesis is correct, tien @/0Ng grain boundaries, arfd+f;=1. We can rewrite the
~L91, asymptotically independent of, gvhile w~L¢gl~¢. The  €nergy in terms of;:

scaled manifold energyE/L%" %) as a function of grain size is
given by the open circles, while the solid scattered dots give the E= 69(1_ fit+efi). 4

data for the scaled roughness/(_*~g'¢) as a function of grain . . L
size. The raw data are plotted for a range of sample sizes varying NOte thatf; is notzero even in the cleavage limit, as even
from L =500 to 2000 in two dimensions amd=50 to 125 in three @ flat surface must cross some grain boundaries. As can be

dimensions. The fit slopes found, i.e., for the square lattice casg€€n from Eq(4) the energy is proportional teas long ad;

(dotted line in the top figuje—0.37+0.05 and for the cubic lattice IS @ constant, which is true provided the interface does not

case(dotted line in the bottom figuye—0.64=0.10, are in good begin to roughen.

agreement with the scaling predictior-4, which predicts 1/3 in In the limit of a cleavage surface a simple argumentffor

two dimensions and 0.590.01 in three dimensions. can be made, which turns out to be wrong for our grain
structures but which is useful nevertheless. The interface has

The scaled widthw/L? is found, approximately, to scale as to cross on average® '/g?~* grains. The area of the grain-

g~ ¢ with =2/3 in two dimensions and=0.41(1) in three  boundary of each crossing is proportionalg® 2 and the

dimensions, in nice agreement with the scaling predictions.total area of the interface is""*. The fraction of the inter-

In the weak grain-boundary limit, the manifold energy is face along grain boundaries is then
proportional to the number of bondiéin the interface,

10

gd*ZLd*l 1
f=d,———=d,-, 5
E=egeN 3) 'Tpd-1gd-1 g ®
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FIG. 5. The fraction of the CM; , which is composed of grain-
FIG. 4. The total number of bonds which cross the critical mani-poyndary bonds. The top figure is for two-dimensional systems,
fold. The top figure is for two dimensional grain structures, while yhile the bottom figure is for three-dimensional systems. The solid
the bottom figure is for three-dimensional grain structures. Thejne is the average, while the dashed lines indicate one standard
solid line is the average, while the dashed lines indicate one stanyeyiation in the data. The sample size, number of configurations,

dard deviation in the data. The calculations are for the followingang grain sizes used are the same as those given in the caption to
values of sample sizé (and number of configurationl). For  Fig 4,

square lattices 5@81), 100054), 120020), 200Q2), with the av-

erage grain sizg varying from 6 to 100; for cubic lattices we used with near spherical grains, however, we would expect(8r
L(N)=50(10), 7%10), 100(10), 12510), with the grain size in the P grains, ’ P :

interval, 3<g<12. to hold.

whered; is a constant that depends on the details of the V. INTERMEDIATE REGIME

grain-boundary structure, but is independent of the average Resyits found from analysis of interfaces in polycrystal-
grain sizeg. However Eq(S) does not describe the data well. |ine materials as a function of the grain-boundary bond
Instead.f; seems to be quite insensitive to variations in grainstrengthe are presented in Figs. 4—7. Itis seen from this data
size. This may be understood as being due to facets. For anat the weak adhesion behavior persists up to energy ratios
e<1, itis energetically favorable to maximize the number ofEC~ 1/2 in two dimensions ané,~1/3 in three dimensions.
grain-boundary bonds on the CM, and in a faceted microAt higher grain-boundary adhesion, we enter the mixed re-
structure, this is achieved by placing the cleavage surfacgime, where the fraction of the interface which is intragranu-
on the plane with the maximum number of facets. This effectar is a sensitive function of the adhesion eneegyn two

is not taken into account in the estimate, E%). In a system dimensions, the mixed phase persists upt®.92; however,
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0.1r
0.081

0.06

W/(L2 g)1/3

0.041

0.02

~0.02 . . . . )

0.3r

W/(L0.41 g0.59)

€ (b)
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FIG. 7. The scaled interface width/(L’g' ¢) vs e. The top

FIG. 6. Average interface energgolid line) per unit area and its  figure is for two-dimensional grains structures, while the bottom
standard deviatiorfup and down trianglgsvs e. The top figure is  figure is for three-dimensional grain structures. The solid line which
for two-dimensional grain structures, while the bottom figure is forjoins the square symbols is a fit to E@.9) (top figure and Eq.
three-dimensional grain structures. The sample size, number of cori20), with y;=4 (bottom figure. The solid line which extends over
figurations and grain sizes used are the same as those given in ttige entiree range is the average of the data, while the dashed lines
caption to Fig. 4. indicate one standard deviation. The sample size, number of con-

) ] ] ] figurations, and grain sizes used are the same as those given in the
in three dimensions cleavage sets ikaD.70. However, we  caption to Fig. 4.

argue, based on an understanding of similar issues in models
of periodic elastic media, that in reality CM’s are rough for the case of critical manifolds in polycrystalline materials, for
e>0.7, provided the sample site>L., wherel. is a criti-  any e<1 there is a competition between the reduction in
cal length which diverges exponentially with the energyenergy produced when the interface incorporates boundary
1—e. This means that cleavage occurs on short length scalebpnds and the extra bonds which are caused by any deviation
but that on long enough length scales CM’s in three dimenfrom cleavage. The scaling theory is a consequence of find-
sions are rough. We now present an analytic argument tong the manifold which minimizes the sum of these compet-
describe the way in which the crossover from cleavage tang energies.
intergranular failure occurs in the mixed phase. For ease of discussion we first consider faceted grains in
Our theory for the onset of the mixed rupture regime istwo dimensions, as indicated in Fig. 8. In this case, whenever
based on theories for the roughening of manifolds in periodithe fracture interface encounters a grain boundary it has two
elastic medig15—-17. The key idea originated with Imry choices. It can either go straight through the grain and cleave
and Ma[25] who constructed a theory for the instability of it or follow one of the available grain-boundary paths. We
the ferromagnetic phase in the random-field Ising model. Irassume that a grain boundary makes an amglgith the
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dimensional case partial failure is also more likely. However,
this does not qualitatively change the analysis, so for ease of
discussion we derive the basic results assuming only com-
plete rupture of facets.

The argument above describes the local variations in the
CM morphology. However, we seek tigéobal minimumen-
ergy surface. To find the global minimum we need to con-
sider the energy fluctuations on large length scales. On large
length scales, there exist statistically favorable regions where
a number of small angle facets are close to each other. It is
energetically favorable to include these regions in the mini-
mum energy interface. To include these favorable regions, it
is necessary for the interface to roughen. The interplay be-
tween the desire of the interface to accommodate favorable
regions with many low angle facets and the energy cost of
manifold wandering determines the interface roughness. We
How make this energy balance quantitative.

According to the local argument, culminating in E8),
the typical number of facets which occur due to local devia-
tions from a cleavage surface is given by

FIG. 8. A manifold through a faceted grain structure.

cleavage interface. The grain-boundary path is longer tha
the cleavage path, which has a len@itiThe length of the
grain-boundary facet is theh+h, due to the underlying
square lattice. The grain-boundary angle is relateld and|

by, 6=arctanfyl). For a given value of grain-boundary en-
ergy ¢, there is a critical grain-boundary angle above which N;=f, (L/g)d~1. (9)
cleavage occurs. The condition for this critical angle is

The central limit theorem states that the typical variation in

e(l+h) =1 this quantity is SN;=N{2. Such variations can be either
| ’ positive (unfavorable fluctuationsor negative (favorable
fluctuations. In our case, the favorable case corresponds to a
Ez } 1 clustering of grain boundaries which have low angles to the
I~ e ™ cleavage direction. There is another factor which must be

_ ) - ) considered, and that is the fact that there are many ways in

which gives the critical angle for a given which a favorable fluctuation on an interface may be se-
lected, that is, the minimal energy fluctuations may occur in

) (6) many different places in the material. This is an entropylike
factor. The typical number of ways that the $&t of facets
may be selected on a cleavage plane is of ordlég). To
include this factor in estimating the typical largest energy
gain, we set

1
f.=arctan——1
€

It is locally favorable for the critical manifold to follow all
grain-boundary facets with angléssmaller thand,. .

The argument above gives thecal picture of how the
interface roughens. According to this local picture, the local L 5
fraction f_ of grain boundaries which lie on a minimal en- —e  NilNt~1, (10
ergy surface is given by 9

0c This sort of argument has been used in other rare fluctuation
szf P(6)do, (7)  problems, for example, in estimating the fracture strength of
Y random network§26]. The typical size of the most favorable
fluctuation in the number of low angle facets in a minimal
energy surface is then
L 1/2
—” . (12)

g

where P(6) is the probability that a grain-boundary is at

angle 6 to the cleavage direction. In the case of randomly

oriented grainsP(#) is a constant, so we have (d-1)/
5Nf‘maxwf{’2(—) z[m

1-€
fL~Abe~—, 8

The typical energy gain for each favorable facetejgl

1/2
U gair~ — €g(1— )99 1112 , (12

whereA is a normalization constant. In the last expression—€)g" /2. Multiplying this by the typical largest favorable
on the right-hand side of Eq8), we have used a linear fluctuation in the number of facef&q. (11)] gives
expansion of the arctan function. In three dimensions the

arguments are more complex; however, for the arguments E (@=vr | E

below, we only need to define a local fractibn. A refine- g : g

ment which may be important in some cases is to include

the curvature of the grain boundaries. If curvature is in-where we have dropped constant factors. To take advantage
cluded, the grain boundaries may partially fail. In the three-of this energy gain, the interface must make excursions from
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the cleavage plane which are of the order of the grain size 1

; — 5002
This leads to an energy cost of order ol 000
- - - 1200°
UCOSf% ng ng 2. 0.8H 20002
SettingU gaint Ucos=0 we find a relation between the criti-  07¢
cal lengthL, the grain size, and the grain-boundary adhe- .|
sion, 5
Sost
L\ (d=3)2 5
B| —< 0.4f
1-€ g
= 2 13 0.3f
1/2| c
fL In<_ 0.2+
Here B is an undetermined constant, which depends on the 1

details of the grain structure, lattice structure, etc. In two o-—————~ e
dimensions Eq(13) becomes '

l-€ B (14)
= 172 i _
‘ fllz(E In(E” 1 — 50°
L
g g 0.9H 75°
. . - . . o 1003
while in three dimensions we find 038y 125°
0.7}
1-€ B (15
c = L.\ 72 o8
fY91n —°> il
g 50.5
[+
From Egs.(14) and (15 we can conclude that for large o
enough systems the cleavage state is unstable to fluctuatior o.3f
for any e<1 in both two and three dimensions. This is most
easily understood by isolating the critical length. In two di-
mensions, the logarithmic term in E@L4) is usually negli- 0.1r
gible, in which case we find that the critical length is given |
by, after dropping constant terms, 0 0.2
i
L= ~ , (16
¢ fL(1—¢)2 91—

FIG. 9. The probability that a critical manifold has zero rough-

. . . . ness as a function af The upper figure is for square lattices, while
where the last expression on the right-hand side of this €A% jower figure is for cubic lattices. The sample size is given in the

tion is found by using Eq(8), which also implies thay, legend to each figure. The grain sizes used for the square lattice

=3.0. In thrgg dimensions, lthe'logarithm is important .and iase are restricted t9~9.5, while in the three-dimensional case
leads to a critical length which is an exponential function of ;g g5

the grain-boundary adhesion. From Efj5) we have
) vs cleavage regions are terminated by steps which are of the
L =gexp(i (Be) )mgexr{b( € ) 17 order of grain size. Critical manifolds are thus flat on length
¢ fL (1-€)? l-€ scales less thah, and algebraically rough on larger length
scales. The critical length diverges as>1 and decreases
whereb is an unknown constant. In writing the last expres-continuously with decreasing<1. At the transition point to
sion in the right-hand side of E¢L7), we have assumed that the weak adhesion limitwhich occurs ak.~ 1/d), whered
fL~[(1—¢€)/€]’3 2 as is implied by Eq(8), with y;=3. is dimension, it becomes a constant dnd=g. Formulas
However Eq.(8) may not apply to three-dimensional grain (16) and(17) are valid up to the transition to the weak ad-
structures, where partial failure of facets is likely, so in ana-hesion limit.
lyzing the data, we allow; to be a free parameter. L. is exponentially dependent af(1—¢) in three dimen-
For sample sizet <L, the CM’s have constant rough- sions and only algebraically dependent on this quantity in
ness, while for sample sizés>L . the interface roughness two dimensions. This means tHat diverges very rapidly as
grows as [/L.)¢ with increasing length scalé. is also the e—1 in three dimensions so that cleavage is typical dor
linear size of the cleavage regions on the interface. Theseear one, even in large samples. This is illustrated in Fig. 9,

3
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which gives the probability that cleavage occurs as a func-
tion of e. For the sample sizes available to us, cleavage is
almost certain fore>0.7 in three dimensions, while in two
dimensions mixed mode failure persists #61£0.93. This is
partially due to the larger sample sizes available in two di-
mensions, but it is mostly due to the exponential divergence
in L. in three dimensions.

In order to test the scaling predictions flog, we rewrite
the scaling behavior of the roughness in termd. of

w [L\¢
—%(—) | (9

Using this formula, we should be able to collapse data for
different values ofg and e onto one scaling plot. However,
this data collapse can only be expected in a range>oé, 107 - — — — -
and up to the value o€ at which cleavage becomes most 10 10 10 10 16
likely. For the sample sizes available to us, this restricts the Lg(e/(1-€)

value of e that we can use to quite a narrow range. The (a)

results are nevertheless quite good, as seen in Fig. 10. Th
scatter in the data is real, there are strong variations in the
roughness even in the case of intergranular ruptsee Fig.

3). From this analysis we find that the theoretical prediction, 7
Eq. (16), with y,=3 is well supported by the data. The three- “1| :
dimensional data are less restrictive and we are only able t
state that the data are consistent with E§j7), with y;
~3.5x1.0.

From the theory developed above and in Secs. Il and |V,§’1o‘2—
it is possible to understand the behavior of the quantities
plotted in Figs. 4—7 as a function of the energy ratid-irst
consider the width data presented in Fig. 7. In two dimen- |
sions, using Eq9.16) and (18) the theory predicts that 0°r

w (1— €\? 19
vy 23 | € 107l . ‘ .
gL 10° 10' 10° \ 10° 10*
while in three dimensions Eqél7) and (18) imply that Lig o))
(b)
w € \73
prErariad o b 1—<| | (20 FIG. 10. Scaling of roughness. The roughnegg is plotted vs
g °L L/L. on a log-log scale. We used the same number of configura-

tions, grain sizes, and configurations as quoted in the caption to Fig.
4. The top figure is for square lattices in the mixed regime

. . . 0.6<e<0.9 and we used Eq16) for L, with y,=3. The solid line
due to the fact that the critical length is very large in thregis a best fit line and has slope 0:6@.10, which is consistent with

dimensions. Nevertheless, we expect finite roughness ifye scaling predictio=2/3 in two dimensions. The bottom figure
macroscopic samples for all> e.~1/d. The solid lines con- s for cubic lattices in the mixed regime 8:4=<0.6 and we used
necting the boxes in Fig. 7 give fits to Eq$9) (top figure in  Eq. (17) for L, with y,=4. The solid line is a best fit line and has
Fig. 7) and (20) (bottom figure in Fig. 7. The fits are very sjope 0.47-0.10, which is consistent with the scaling prediction
good neare=1, even in the regime in which the finite ;=0.41+0.01 in three dimensions.

samples which we are considering frequently undergo cleav-

close to the intergranular regime is probably fortuitous. Thechough it should look almost linear due to the exponential
theory is not strictly valid in that regime. behavior ofL,.
The energy(see Fig. 6 is a linear function ofe for e The fraction of CM bonds which are grain-boundary

<€, [see Eq.3)]. The energy is also a linear function ef bondsf; (see Fig. $is approximated byin two dimensions
when cleavage occufsee Eq(4)]. In our three-dimensional

samples this occurs fog=>0.7. There is then only a small
region (see Fig. 6, bottom figujein which the energy is a fi=f_+ L (21)
nonlinear function ofe. Again in the limit of macroscopic g+L¢

whereb is a constant which is not specified by the scaling
theory andy;~3.5+1.0. The fact thaiv=0 for ¢>0.7 is
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where f| is the fraction of facets which are energetically is accommodated partially by grain-boundary rupture and
favorable, based on a local condition, and the rai¢g partially through cleavage of the grains. We found that on
+L.) gives the additional interface bonds which occur dueshort length scaleb<L, cleavage occurs, but that on long
to the contribution from nonlocal wandering. In three dimen-length scale$>L . CM’s are always rough in both two and
sions the analogous expression is three dimensions. The critical lengtly, is simply propor-
tional to the average grain size, but is a more nontrivial func-
tion of the energy ratice. Explicit expressions fot. are
given in Eqgs.(16) and (17) for two and three dimensions,
respectively. These expressions are confirmed by numerical
Similar expressions can be found for the number of bonds ogimulations using the maximum-flow algorithfsee Figs.
the interface(Fig. 4). Using Egs(19) and(20), these expres- 4-10. We showed that it is possible to relate the behavior of
sions lead to rather complex functions af however, the properties of interest, such as the intergranular fradti@nd
main point to be taken away from the analysis is that thehe CM roughnessy, to L. so thatl, is the central quantity
critical lengthL sets the scale for the crossover from inter-of the theory.
granular to mixed mode to cleavage in all of the observables \We are currently using this approach to study grain-
that we have studied. boundary engineered materials where the objective is to in-
From the analysis above it is clear that once we figéis  crease the number of low angle grain boundaries in order to
a function of material parameters, it is possible to develop amprove the material performance. In a more general context,
detailed theory for the behavior of many of the properties ofit has been realized for some time that it is necessary to
interest as a function of material parameters. In our currendlevelop theories for the performance of complex materials
work we are developing formulas fdr, in more realistic  that go beyond the unit cell modg27,28. In the case of
cases such as GBE materials and in fiber and platelet reirpolycrystalline materials, the unit cell model uses the aver-
forced materials. age grain size as the typical length scale. The crossover
length L, introduced here is due to a cooperative effect of
many grain boundaries. It provides an interesting new alter-
- native length scale which is important in a broad range of
The: energy and r_norphology of the minimum energy SU"nonlinear effects in polycrystalline materials.
faces in polycrystalline materials have been analyzed. These
minimum energy surfaces af€M'’s) in the sense that they
are the surfaces on which voltage localizes in certain nonlin-
ear electrical process¢s], and they provide an approxima-
tion to quasistatic fracture surfaces at short distapt8k The research at MSU was supported by the DOE under
We have developed a scaling theory to describe the beContract No. DEFG02-90ER45418, and by Sandia National
havior of the CM energy and interface morphology as a funclLaboratories. This work was performed in part at Sandia
tion of the ratio of the grain-boundary energy to the intra-National Laboratories, a multiprogram laboratory operated
grain energy,e. Intergranular processes dominate up to aby Sandia Corporation, a Lockheed Martin Company, for the
critical thresholde.~ 1/d, for d-dimensional hypercubic lat- United States Department of Energy under Contract No. DE-
tices. In the mixed mode phase; €., the critical manifold ~ AC04-94AL85000.

2mgl
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